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CONDITIONS FOR DEVELOPMENT OF CAVITATION IN SCLERONOMOUS MEDIA

UDC 539.3S. V. Stebnovskii

An energy inequality that determines the conditions for development of cavitation in scle-
ronomous media in the range from liquid (bitumens, paints, and gels) to solid (lead, aluminum,
copper, etc.) plastic media is constructed upon pulse tension in terms of the viscoelastic-plastic
model. A relation that allows one to determine the time of negative-pressure relaxation during
the growth of cavitating pores in a medium is derived. With allowance for the previously ob-
tained conditions for development of bubble cavitation in a relaxing field of negative pressure in
shock wave-loaded liquids, this result allows one to separate a class of condensed media capable
to cavitate under pulse loading.

It is known that the dynamics of fracture of condensed media is strongly affected by the development
of bubble cavitation in them at the stage of unloading. In particular, the growth of bubbles (or pores) results
in the relaxation of stretching stresses. Even under intense shock-wave loading, this relaxation blocks brittle
fracture of the sample: its fragmentation occurs in a viscous-fracture regime. It has been found experimentally
[1, 2] that upon pulse volume tension of the sample (at the stage of unloading after shock-wave loading),
unbounded cavitation can develop both in low-viscosity liquids and in high-viscosity emulsions, suspensions
(pastes), and gels having a liquid low-viscosity matrix. At the same time, it has been shown that in the
samples of high-viscosity Newtonian liquids, the development of apparent cavitation is not observed under
similar loading conditions. According to [3, 4], the dynamic fracture of plastic metals is accompanied by the
growth of almost spherical pores. In this connection, the determination of conditions satisfied by the loading
parameters at which a cavitational process of a given intensity is developed in the media under study is of
interest.

The conditions for development of bubble cavitation in liquid media of arbitrary viscosity upon pulse
volume tension owing to shock-wave loading were determined in [5]. In the present work, the conditions under
which cavitation develops in the case of pulse loading of the samples of scleronomous viscoelastic-plastic media
are determined. These media behave as Hooke’s elastic body at a shear stress τ smaller than the threshold
value τ∗ corresponding to the onset of plastic flow and go to a viscoplastic state for τ > τ∗. (Among these
media are plastic metals, bitumens, asphalts, paints, gels, etc.) We consider that the scleronomous medium
is a cavitating medium at the specified parameters of shock-wave loading if the volume concentration of
cavitational hollows α increases by at least an order of magnitude compared to the initial value α0 at the
stage of its unloading in the stretching-stress zone.

1. Since all the condensed media possess volume elasticity, the rheological model of their volume
tension can be presented as follows. If a medium had an ideally homogeneous structure (Fig. 1a), its reaction
to the volume strain εV (tension) could be described by the mechanical model shown in Fig. 1b. In this case,
the thermodynamic equilibrium in the medium is disturbed upon rapid volume tension and it is reached again
for a certain time T0. Here, in the process of equilibrium re-establishment, the pressure that opposes the
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Fig. 1

change in the volume of the medium, decreases, and, hence, the modulus of volume elasticity decreases from
the maximum dynamic value K∞ to the static value K0. The thermodynamic equilibrium is re-established
owing to restructuring of the medium at the molecular level, which is accompanied by partial dissipation of
the elastic energy of the medium owing to its volume viscosity ζ0 (unloading of the spring K1 on the piston ζ0

in the mechanical model). Therefore, in this case, the time of tensile-stress relaxation from the initial value
σV (0) to the equilibrium value σ0

V can be presented in the form of the dependence T0 = ζ0/(K∞ −K0). If
σ0
V is lower than the threshold value of the volume yield of the medium σ∗V (determined by intermolecular or

interatomic bonds in this case), and the maximum shear stress is (σi − σj)/2 = τm < τ∗ (σi and σj are the
principal values of the tensile-stress tensor and τ∗ is the yield point), the stress σ0

V = K0εV will occur for an
infinitely long period in an ideally homogeneous medium at the stage of t > T0 for εV = const.

Real condensed media (Fig. 2a) always have structural defects: liquids contain cavitational nuclei, and
scleronomous media contain dislocations and micropores. As a result, the elastic stresses relax in such media
almost at any values of τm. In liquid media, we have τ∗/P∞ � 1, where P∞ is the hydrostatic pressure,
and the growth of a cavitational nucleus, i.e., the divergent flow of the liquid which determines tensile-stress
relaxation, begins when the pressure difference in the bubble and the liquid matrix is positive (with allowance
for surface tension). In scleronomous media, for τm < τ∗, the motion of vacancies has a diffuse character, and
relaxation occurs in a creep regime; for τm > τ∗, the above-barrier gliding of vacancies, which determines the
plastic-deformation regime of the medium and, hence, stress relaxation, occurs.

With allowance for the aforesaid, we formulate the problem of determining the conditions under which
cavitation develops in scleronomous media and the time of tensile-stress relaxation. We assume that the
sample of the material to be examined having, for definiteness, a spherical or cylindrical symmetry, contains
monodisperse micropores of radiusR0 uniformly distributed over the sample. The initial volume concentration
of the micropores is α0, and their counting concentration is n = 3α0/(4πR3

0). We separate a cubic (1×1×1 cm)
unit volume in the sample and divide it into n identical cubic cells with a micropore at the center of each
cell (Fig. 2a). The cell edge is l = n−1/3 = R0[4π(3α0)−1]1/3 long; by virtue of the smallness of α0, we have
L � l � R0, where L is the characteristic dimension of the sample. The physical processes in the medium
can occur on three space scales. Tensile-stress relaxation, which is the process of reaching thermodynamic
equilibrium in a macroscopic physical system, occurs on the L scale, the pore sizes change on the l scale, and
the plastic deformation of the material in the neighborhood of each pore occurs on the scale of interatomic
or intermolecular interactions owing to the motion of dislocations.

Figure 2b shows schematically the mechanical model that corresponds to macroscopic processes on the
L scale. The sample to be examined is assumed to be loaded by a one-dimensional, coaxial, and divergent
from its center of symmetry shock wave (SW) of the type P (r̂, t) = P∗(r̂, 0) exp (−t/λ(r̂)), where r̂ is the
distance from the center of symmetry of the sample, P∗(r̂, 0) is the pressure in the SW front at the moment
of its motion from the center of symmetry at the distance r̂, and λ(r̂) is the constant of the time of pressure
drop behind the SW front for a fixed r̂. After the SW front reaches the free surface of the sample, at the
unloading stage the free surface displaces, and a rarefaction wave which converges to the center of the sample
propagates into the sample; as a result, the volume strain of the sample εV occurs (in the model, the springs
K1, K2, and K3 are stretched) and a tensile-stress field σV = (K1 + K2 + K3)εV = K∞εV forms. With εV
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Fig. 2

remained constant, the stresses relax partially owing to the transition of the medium in a thermodynamic-
equilibrium state for T0 = ζ0(K∞ −K0)−1, and the stress decreases to σV = (K2 +K3)εV = K0εV [usually,
(K∞−K0)K−1

0 � 1 for scleronomous media]. Then, since the shear stresses τ = σi−σj appear on the l scale
in the vicinity of the pore for τm > τ∗, the medium goes to a viscoplastic state and pore extension begins.
On the mechanical model of this process (Fig. 2c), the Saint-Venant (SV) element is opened, and the spring
G, which corresponds to the shear elasticity of the medium, is unloaded on the piston µ which characterizes
its plastic viscosity; in the general cases, the plastic viscosity depends on the strain rate, the concentration
of vacancies, the temperature, and other physical parameters of the process.

We formulate a rheological equation of state that corresponds to the shear deformation of a medium
in the neighborhood of a pore. Based on the mechanical model of a medium (Fig. 2c), which represents a
sequence of the mechanical models of Hooke’s and Binham’s bodies, one can write the total value of the strain
deviator eij in the form

eij =
σ̃ij
2G

+ σ̃ij

[
2(µ+ η)

∂

∂t

]−1
,

whence
˙̃σij +

G

µ+ η
σ̃ij = 2Gėij . (1)

Here σ̃ij is the strain deviator, η is the effective-viscosity coefficient of the medium upon passage of the
intensity of the tangential stress τi = (σ̃ij σ̃ij/2)1/2 through the value of the limiting shear stress τ∗, and µ is
the shear-viscosity coefficient of the medium for τi > τ∗, i.e., in a plastic-flow regime. Because when the plastic
element η of the complex mechanical model reaches the limiting shear stress [6], the viscous element parallel to
it µ does not render resistance to deformation, we assume that µ = 0 in (1); multiplying this equation by σ̃ij ,
we obtain η = τ∗(2ėij ėij − ėij ˙̃σijG−1)−1/2 with allowance for σ̃ij ˙̃σij = 0 and the Mises condition σ̃ij σ̃ij = 2τ2

∗
or η = τ∗{ėi[1 − ˙̃σij/(2Gėij)]1/2}−1 with allowance for the expressions for the generalized shear-strain rate
ėi = (2ėij ėij)1/2. Substituting the latter expression into (1), we obtain the general form of the rheological
equation for shear strain of the medium

σ̃ij +
[
µ+ τ∗ė

−1
i

(
1−

˙̃σij
2Gėij

)−1/2] ˙̃σij
G

= 2τ∗ėij ė−1
i

(
1−

˙̃σij
2Gėij

)−1/2
+ 2µėij (2)

for τi > τ∗ or

τ +
[
µ+ τ∗

(
ε̇2
τ −

τ̇ ε̇τ
2G

)−1/2 ε̇τ
|ε̇τ |

]
τ̇

G
= τ∗

(
1− τ̇

2Gε̇τ

)−1/2 ε̇τ
|ε̇τ |

+ µε̇τ (3)

in the case of pure shear (ε̇τ is the pure-shear strain rate).
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For τ < τ∗, the SV element is closed; therefore, η =∞ and the equations of state (2) and (3) take the
form σ̃ij = 2Geij and τ = Gετ , which corresponds to the case of Hooke’s elastic body.

For τ > τ∗, the SV element is opened; therefore, on the mechanical model, the further expansion of
the spring does not occur: strain occurs only owing to the displacement of the piston µ, which corresponds
to a viscoplastic flow of the medium. Therefore, for τ > τ∗, the element G is not subjected to deformation
on the mechanical model; assuming that G =∞ in (2) and (3), we obtain the following equation of state of
a viscoplastic medium in the vicinity of pores: σ̃ij = 2τ∗ėij/ėi + 2µėij or

τ = τ∗
ε̇τ
|ε̇τ |

+ µε̇τ = τ∗ sign ε̇τ + 2µε̇τ . (4)

Since upon expansion of the medium, the stress tensor σij has a diagonal form in any coordinate system, for
the spherical coordinate system (r, θ, ϕ), whose coordinate origin is aligned with the center of a pore, Eq. (4),
which is the constitutive equation of a medium in a viscoplastic-flow regime in the vicinity of a spherical
pore, takes the following form:

σrr − σθθ = −τ∗ + 2µ
(∂u
∂r
− u

r

)
. (5)

Here u is the radial plastic-flow rate of the medium.
2. Based on the aforesaid, we consider the problem of growth conditions for a pore contained in the

ith cell on the l scale in the following formulation. The center of the pore coincides with that of the cell;
the distance from the cell’s center to the center of symmetry of the sample is r̂i. We assume that P1 is the
gas pressure in a micropore of radius R0 and that the negative pressure −P̃ 0

i is applied to the cell material
(the time for which the pressure −P̃ 0

i is reached on the entire scale of the cell is ignored). In addition,
the hydrostatic pressure P∞ > 0 is applied to the entire volume of the sample, and the capillary pressure
PL = 2γR−1, where γ is the interphase-tension coefficient and R is the current radius of the pore, acts on the
pore surface. Since the goal of this work is to determine the conditions for pore growth, our analysis omits
the range of dynamic loading in which the pressure modulus | − P̃ 0

i | is so large at the stage of unloading
that, undoubtedly, the entire medium in the cell goes to a viscoplastic state and the pore grows in an almost
bubble-growth regime in a high-viscosity liquid. Therefore, we consider the cases of ultimately small values
of | − P̃ 0

i | at which a viscoplastic flow of the medium and the pore growth are still possible.
With allowance for R0 � l, using the solution of the stress-distribution problem in an elastic medium

with a spherical cavity [7], for the boundary conditions

σrr

∣∣∣
r→∞

= −(−P̃ 0
i + P∞), σrr

∣∣∣
r=R

= −(−P1 + 2γ/R), (6)

we obtain

σrr = Pi0 + P ′i/r̄
3, σθθ = Pi0 − P ′i/(2r̄3), (7)

where Pi0 = P̃ 0
i − P∞, P ′i = −P̃ 0

i − P1 + P∞ + 2γR−1, and r̄ = rR−1.
According to the Tresca condition [8], a plastic flow will occur in the medium if

τm = 0.5(σθθ − σrr) > τ∗. (8)

After substitution of (7) into (8), we obtain the following plastic-flow condition in the vicinity of the pore:

τm =
3

4r̄3

(
P̃ 0
i + P1 − P∞ −

2γ
R

)
> τ∗. (9)

If (9) is also satisfied for r̄ > 1, the outer radius r = a of the spherical viscoplastic layer (see Fig. 2a), in
which the pore extension is possible, is determined from (9) by the expression

a = R(3P̂i/(4τ∗))1/3, (10)

where P̂i = −P ′i = P̃ 0
i + P1 − P∞ − PL. It follows from (9) and (10) that, if, for P̂i = const, at R = R0

the plastic-flow condition is satisfied in the layer R0 6 r 6 a0, then we have τm(aR−1) > τ∗ for any
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Fig. 3

R > R0, since P̂i = const for aR−1 = const as well, i.e., a increases with R. Generally, if P̂i = ψ(t̂), then
aR−1 = [3(4τ∗)−1]1/3P̂ 1/3(t̂); therefore, in the case where the function ψ(t̂) > 0 decreases as P̂i → 4τ∗/3, the
radius a→ R, i.e., the thickness of the plasticity zone tends to zero and the pore is “frozen” into the elastic
medium. Here t̂ is the time reckoned from the moment of arrival of the rarefaction-wave front at the ith cell.
We note that in an almost incompressible viscoplastic medium, the pores can grow owing to the presence of
structural defects in the medium.

The equation of motion of a viscoplastic medium in the layer R 6 r 6 a with the average density ρ

has the form

ρ
(∂u
∂t

+ u
∂u

∂r

)
=

∂

∂r
σrr +

2(σrr − σθθ)
r

. (11)

By virtue of the spherical symmetry, the motion of the medium will be vortex-free; consequently, with
allowance for its incompressibility, from the continuity equation we obtain the relation for the velocity field
in the layer R 6 r 6 a:

u = ṘR2/r2. (12)

Substituting (5) and (12) into Eq. (11) and integrating it over the elastoplastic layer from R to a, with
allowance for the boundary conditions (6), the first of which takes the form σrr(r) = P̃ 0

i − P∞ at the layer
boundary r = a, we obtain the equation of pore growth in the layer R 6 r 6 a

(1− β0)RR̈+
[3

2
− 2
(

1− β3
0

4

)
β0

]
Ṙ2 +

4µ
ρ

(1− β3
0)
Ṙ

R
=
P̂i
ρ

(
1− 2τ∗

P̂i
ln β−1

0

)
, (13)

in which β0 = R0a
−1
0 = Ra−1 is determined for P̂i = const from (10). According to (13), for the pore to

expand up to a certain given value of the radius R1, the negative-pressure field in the cell should be subject
to the condition

P̂i(t̂) > 2τ∗ ln β−1
0 (14)

at least for 0 6 t̂ < t̂01 (t̂01 is the time for which the cell expands to a given radius). It is easy to verify that
condition (14) is always satisfied if the inequality (9) holds.

Therefore, the processes that occur under the action of a negative pressure in a viscoelastic-plastic
medium containing micropores can be presented on the l and L scales as follows. At the initial moment t̂ = 0,
a field of elastic tensile stresses −Pi0 forms under the action of the negative pressure in the ith cell (Fig. 3a).
Here the free specific energy of the medium can be determined from the known relation f = 0.5σikeik; with
allowance for the isotropic character of the medium and Hooke’s generalized law eik = [(1+ν)σik−νσllδik]E−1,
this relation is reduced to the form

81



f = 0.5(1 + ν)[σ2
ik − νσ2

ll(1 + ν)−1]E−1.

Here E and ν are Young’s modulus and Poisson’s ratio, respectively. With allowance for σ2
ik = I2

1 − 2I2 and
σ2
ll = I2

1 , where I1 and I2 is the first and second invariants of the tensor σik, and in the case of volume
expansion of the medium I2 = 0, we rewrite the latter equality in the following form with the use of (7):

f = 0.5(σ2
rr + 2σ2

θθ)E
−1 = 1.5P 2

i0[1 + 0.5(1 + ξ)2r̄−6]E−1. (15)

Here ξ = (P1 − PL)(P̃ 0
i − P∞)−1.

We note that in the case of solid-plastic materials, we have τ∗ � PL, and, consequently, P̃ 0
i � PL

according to (14), i.e., ξ � 1. For liquid-plastic media, condition (14) is satisfied, beginning with values of
P̃ 0
i of the order P∞, i.e., the cases where ξ is about unity are possible in these media.

At the initial moment, the free elastic energy of the cell F0 is concentrated in the spherical layer
R0 6 r 6 0.5l, where l is the diameter of the sphere inscribed into the cubic cell (see Figs. 2a and 3a).
Therefore, integrating (15) over the volume of this layer within the limits 1 6 r̄ 6 0.5lR−1

0 = (2R0
3
√
n)−1 = k,

we obtain the expression

F0(t̂) = 4πR3
0

k∫
1

f(r̄)r̄2 dr̄ = π(1− 8nR3
0)[(1 + ξ)2 + (4πnR3

0)−1]E−1R3
0P

2
i0 (t̂ = 0);

after the replacement E = 9GK0(3K0 + G)−1, where K0 is the modulus of volume elasticity of the matrix,
this expression is reduced to the form

F0(t̂) =
πR3

0

3
(1− 8nR3

0)
[
(1 + ξ)2 +

1
4nR3

0

]( 1
3K0

+
1
G

)
P 2
i0 (t̂ = 0). (16)

Then, the pore growth begins in the plastic-flow zone R0 < r 6 a0 formed in its neighborhood (Fig. 3a),
where a0 is determined from (10). Here the plastic zone borders on the region a0 < r < 0.5l, in which the
medium continues to be in an elastodeformed state. In the process of pore growth, the plastic-flow zone
extends and, hence, the thickness of the “undisturbed” elastodeformed layer, in which the negative pressure
preserves the constant value −P ′, decreases. At last, at a certain moment of time t̂∗, the thickness of this
layer decreases to zero: the boundary of the plastic-flow zone goes beyond the boundary of the cell, i.e., the
quantity a reaches the value a∗ = 0.5l = 0.5n−1/3. From this moment, the constant-pressure condition is no
longer satisfied at the boundary of a∗. By analogy with (16), we construct a relation that determines the
value of the free elastic energy at any moment 0 < t̂1 < t̂∗ in the layer a1 < r 6 a∗. Integrating f(r̄) over r̄
in the range a1R

−1
0 = b1β

−1
0 < r̄ < a∗R

−1
0 = (2R0n

1/3)−1, we obtain

F (t̂1) =
πR3

0

3

[
(1 + ξ)2

(β3
0

b31
− 8nR3

0

)
+

1− 8nR3
0b

3
1β
−3
0

4nR3
0

]( 1
3K0

+
1
G

)
P 2
i0. (17)

Here, with allowance for β3
0 � 1 and P̂i(t̂) = P̃ 0

i [U(t̂)−U(t̂− t̂∗)] +P1−P∞−PL (U is a unit function), the
quantity b1 is determined on the segment 0 6 t̂ 6 t̂∗ from the solution of Eq. (13) written in the form

bb̈+
3− 4β0

2(1− β0)
ḃ2 + h

ḃ

b
= Qh(1− S), (18)

where h = 4µ/[ρR2
0(1−β0)], Q = P̂i/(4µ), D = 2τ∗/P̂i, and S = D ln β−1

0 . A qualitative analysis shows that,
on the time interval (0, t̂∗), the inertial term in this equation (i.e., the term containing ḃ2) is several orders of
magnitude smaller than the other terms of the equation, and that monotonically decreasing, the acceleration
b̈ has the same order of magnitude as the inertial term at a certain moment of time t̂0. With allowance for
this, assuming that b ' 1 and P̂i ' P̃ 0

i −P∞, we reduce (18) to the following form at the initial stage of pore
growth 0 < t̂ 6 t̂0:

b̈+ hḃ = Q(1− S)h. (19)

Ignoring the term b̈, at the stage of t̂ > t̂0, we have
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ḃ = Q(1− S)b. (20)

Solving (19) and (20) on the time intervals 0 6 t̂ 6 t̂0 and t̂ > t̂0, respectively, we obtain

b(t) =

{
1 +M(t+ e−t − 1), 0 6 t 6 t0,

b(t0) exp [M(t− t0)], t > t0;
(21)

ḃ(t) =

{
Q(1− S)(1− e−t), 0 6 t 6 t0,

Q(1− S)b(t), t > t0,
(22)

where t = ht̂ and M = Q(1−S)h−1. Since t̂0 is the moment of time at which, decreasing, b̈ is comparable, in
order of magnitude, with |3−4β0|ḃ2[2(1−β0)b]−1, one can assume that t̂0 is the moment of time at which the
equality b(t̂0)b̈(t̂0) = 0.5(3− 4β0)(1− β0)−1ḃ2(t̂0) holds. Substituting the values of b, ḃ, and b̈ from (21) and
(22) into this equation, with allowance for t̂0 = h−1t0, we obtain the relation (3− 4β0)et0 + (1− 2β0)e−t0 −
2(1− β0)t0 = 2(1− β0)M−1 + 2(2− 3β0) from which t0 is determined.

Thus, during the pore growth in the cell, at least prior to the moment t̂∗ the elastic layer a < r 6 0.5l
(Fig. 3a) whose inner boundary moves according to the law (10) and the outer boundary remains immovable,
i.e., the cell size and the average density of the medium remain constant, is preserved at the periphery of
the viscoplastic zone R 6 r 6 a. Since the volume and density of the sample remain constant and the
free energy decreases at this stage of pore growth, the process should be accompanied by a decrease in the
volume-average negative pressure −p. To estimate the time of its relaxation T1, we introduce the concept of
an energetically equivalent medium (EM) on the time interval 0 6 t̂ 6 t̂∗, the sample of which has the same
size L and density and is divided into cells of the same size (Fig. 3b) containing pores of the same radius R0

as in the case of the sample under study (Fig. 3a). At the initial moment of time, the store of free elastic
energy in the EM cell also equals F0, and F (t̂) decreases in the cell with time according to the same law as
in the cell of the sample. However, in contrast to the latter, this process in the EM cell occurs at a constant
value of the micropore radius R0, i.e., the free elastic energy is spent for internal restructuring of the EM
whose thermodynamic equilibrium was disturbed by volume tension rather than for pore growth. Here the
EM elastic energy decreases and, hence, the negative pressure in the cell, which coincides in this medium
with the average nonvolume pressure −p, also decreases.

It is evident that F (t̂) in the EM cell is determined from a formula similar to (17) [but containing
−Pi0 = const instead of −p = −Pi0 exp (−t̂T−1

1 )]:

F (t̂) =
πR3

0

3
(1− 8nR3

0)
[
(1 + ξ)2 +

1
4aR3

0

]( 1
3K0

+
1
G

)
P 2
i0 exp

(
− 2t̂
T1

)
. (23)

Since at any moment of time 0 6 t̂0 6 t̂∗, the value of F (t̂) in the cells of the medium considered and the
EM should be the same (by definition of the EM), equating (17) and (23) at t̂ = T1 < t̂∗, we have

b(T1) =

[
Bβ3

0

4

(
1 +

√
1 +

8(1 + ξ)2

B2

)]1/3

,

B =
(

1− 1
e2

)[ 1
4nR3

0

− 8(1 + ξ)2nR3
0

]
− [(1 + ξ)2 − 1]

1
e2
, e ≈ 2.71828.

Equating this expression to the value of b(T1) from (21), we obtain a relation that determines the dependence
of the relaxation time of the pressure −p in an viscoelastic-plastic medium with pores:

T1 = t̂0 +
1

3Q(1− S)
ln

[
Bβ3

0

4

(
1 +

√
1 +

8(1 + ξ)2

B2

)]
.

By definition of t̂0, on the time interval 0 6 t̂ 6 t̂0, we have b(t̂) ' 1 and, hence, F (t̂0) ' F0, i.e., p(t̂0) ' Pi0;
therefore, the latter equality is reduced to the form
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T1 '
1

3Q(1− S)
ln

[
Bβ3

0

4

(
1 +

√
1 +

8(1 + ξ)2

B2

)]
. (24)

The resulting dependence (24) allows one to determine the relaxation time of the cell-averaged value of the
negative pressure −p; we note that relaxation occurs, because the free elastic energy F is spent for pore
growth. However, the pore radius can grow to a certain value of R∗ = b∗R

−1
0 provided the store of F in

the layer R0 6 r < a∗ = β−1
0 b∗ is not sufficient for execution of the work ∆W (b∗) to expand the pore in an

viscoelastic-plastic medium to a given size. We determine the value of ∆W (b∗) by integrating (18) over time
from t̂0 = 0 to the moment t∗ corresponding to the value of b∗(t̂∗):

4πR3
0

3
(b3∗ − 1)P̂i =

4πR3
0

3
(b3∗ − 1)2τ∗ ln β−1

0 + 2πρR5
0[(1− β0)b3∗ḃ

2
∗ − β0J1] + 16πR3

0µJ2. (25)
Here, with allowance for (21) and (22), we have

J1 =

t̂∗∫
0

b2ḃ3 dt̂ = Mh2
[
(t0 + 5e−t0 − 5)M +

1
5

(e5 ln b∗ − 1)
]
,

J2 =

t̂∗∫
0

bḃ2 dt̂ = M2h
(
t0 + 2e−t0 +

1
3

e3 ln b∗ − 11
6
− 1

2
e−2t0

)
.

The left side of Eq. (25) refers to the work done to expand the pores to the radius R∗, and the right side refers
to the components of this work (disregarding the energy spent to form the free surface of the pore). Because
the initial store of free elastic energy in the layer 1 < r̄ < a∗R

−1
∗ = b∗β

−1
0 of the cell should be not smaller

than ∆W (b∗) for the pore radius to reach the value of R∗, determining the value of ∆F = F (b)−F (b∗) from
(13) and (17) for b = 1 and substituting it into the left side of (25), one can obtain the energy inequality

P 2
i0

( 1
3K0

+
1
G

)[ b3∗
β3

0

− 1+
(1+ξ)2

2

(
1− β3

0

b3∗

)]
> 4τ∗(b3∗ − 1) lnβ−1

0 +3ρR2
0[(1− β0)b3∗ḃ

2
∗ − β0J1]+24µJ2 (26)

that is the condition under which the pore grows to a given radius.
3. An analysis of (26) shows that, as R∗ → R0 (i.e., b∗ → 1), the right side of the inequality tends to

zero, and the left side to a certain finite value [(3K0)−1 +G−1][β−3
0 + 0.5(1 + ξ)2(1− β3

0)]P 2
i0, whose physical

meaning is as follows. According to (23), like ∆W [see (25)], the function ∆F contains, as a parameter,
the initial radius of the pore R0 [after substitution of ∆F into (25), R0 is cancelled and it is absent in (26)];
therefore, as R∗ → R0, the expression for ∆F (b∗) is reduced to the form

∆F0 = ∆F (R0) =
2
3
πR3

0

( 1
3K0

+
1
G

)[
β−3

0 − 1 +
(1 + ξ)2

2
(1− β3

0)
]
P 2
i0. (27)

It follows from (27) that ∆F0 is the elastic free energy necessary to do work to increase the pore from R = 0
to R0. However, since at the initial moment (at the moment when an elastic-stress field forms in the cell), the
pore radius is already equal to R0 by definition, not only the elastic energy released from the spherical layer
4π(a2

∗−a2
0)/3, but also the initial “store” of energy ∆F0 will be spent for its expansion from the initial radius

R0 to R∗. Therefore, a certain growth of pores is possible until the initial “stock” of energy ∆F0 is spent at
small values of Pi0 which do not satisfy the condition F (R0)− F (R∗) > W (∆R), where ∆R = R∗ −R0.

Thus, relations (24) and (26) allow one to determine the degree of pore extension b∗ and the relaxation
time of the volume-averaged negative pressure T1 of the sample with the use of given values of the negative
pressure applied to the medium, its rheological parameters, the initial sizes of the pores, and their initial
volume (or counting) concentration. In deriving relations (24) and (26), at the stage of plastic flow, the
shear viscosity was assumed to have a certain constant value µ characteristic of the given medium. This
assumption, which is based on analysis of experimental data, was used in [3, 9], where the growth of an
isolated pore in the spherical layer of a viscoplastic medium, which expands as the pore grows, under the
action of a constant negative pressure was considered. However, as was noted, in a more exact approximation,
µ should depend on the dynamics of loading of the medium, its rheological properties, and the character and
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amount of impurities. If this dependence is known in a particular case, one should substitute it into (13)
instead of µ and perform the above procedures connected with the conditions for pore growth. In this case,
the integration of Eq. (13) is complicated.

The results obtained are applicable to both liquid- and solid-plastic media. With allowance for the
experimental data from [2, 9–11] on the physical parameters of media, the dependence of b∗ and T1 on æ =
Pi0/τ∗ was estimated by means of (24) and (26) for the following materials:

— gelatin jelly (τ∗ = 104 Pa, µ = 1 Pa · sec, R0 = 10−4 cm, n = 2000 cm−3, ρ = 1.1 g/cm3,
K0 = 4 · 109 Pa, and G = 107 Pa);

— lead (τ∗ = 107 Pa, µ = 40 Pa · sec, R0 = 5 · 10−5 cm, n = 2000 cm−3, ρ = 11.34 g/cm3,
K0 = 4.44 · 1010 Pa, and G = 5.55 · 109 Pa);

— copper (τ∗ = 6 · 107 Pa, µ = 30 Pa · sec, R0 = 5 · 10−5 cm, n = 2000 cm−3, ρ = 8.9 g/cm3,
K0 = 11.46 · 1010 Pa, and G = 4.1 · 1010 Pa).
The following dependences have been obtained:

— for gelatin jelly, T1 = 7.1·10−4 sec and b∗ = 1.05 at t̂∗ = 6.8·10−6 sec and æ = 3.5, T1 = 6.8·10−4 sec
and b∗ = 1.14 at t̂∗ = 1.6 · 10−5 sec and æ = 4, T1 = 5.34 · 10−4 sec and b∗ = 1.28 at t̂∗ = 2.4 · 10−5 sec and
æ = 5, and T1 = 7.9 · 10−5 sec and b∗ = 1.73 at t̂∗ = 4.38 · 10−5 sec and æ = 6; for æ > 6.2, the quantity
b∗ grows at least to values exceeding the value of bm = am(β0R0)−1 = (2β0R0n

1/3)−1 = β−1
0 [π/(6α0)]1/3

corresponding to reaching the cell boundary by the external radius of the viscoplastic layer;
— for lead, T1 = 2.3 · 10−5 sec and b∗ = 1.053 at t̂∗ = 2 · 10−7 sec and æ = 5, T1 = 1.06 · 10−5 sec and

b∗ = 1.26 at t̂∗ = 4.3 · 10−7 sec and æ = 10, and T1 = 8.07 · 10−6 sec and b∗ = 2.85 at t̂∗ = 1.5 · 10−6 sec and
æ = 12.7; b∗ > bm for æ > 13;

— for copper, T1 = 2.41 · 10−6 sec and b∗ = 1.014 at t̂∗ = 8.7 · 10−9 sec and æ = 5, T1 = 1.15 · 10−6 sec
and b∗ = 1.2 at t̂∗ = 3.7 · 10−8 sec and æ = 10, T1 = 8.14 · 10−7 sec and b∗ = 3.5 at t̂∗ = 2.1 · 10−7 sec and
æ = 13.5; b∗ > bm for æ > 13.6.

It follows from the results presented above that the qualitative dependence b∗(æ) (Fig. 4) is the same
for any condensed media possessing viscoelastic-plastic properties. Here æ0 is the minimum value of æ

at which the growth of cavitating pores begins, b∗j is the maximum degree of pore extension for a given
value of æj , and æ∗ is the threshold level æ at which the pore radius grows to values equal or exceeding
Rm = R0β

−1
0 (6α0/π)−1/3.

Thus, for each viscoelastic-plastic body, there are three ranges of loading by negative pressure: æ < æ0

(the pore sizes remain constant during the volume deformation of the body), æ0 < æ < æ∗ (the deformation
is accompanied by an insignificant extension of the pores: αα−1

0 6 10), and æ > æ∗ [the unrestricted growth
of the pores to the sizes Rm > R0β

−1
0 (6α0/π)−1/3]. It is noteworthy that a certain qualitative analogy exists

in the growth of bubbles from cavitational nuclei in liquids under the action of negative pressure [12], where
there are also three ranges of negative-pressure values corresponding to the stable state of the radius of a
cavitational nucleus, its unlimited extension, and the unbounded growth of a cavitational bubble.
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